SURE Estimates for a Heteroscedastic Hierarchical Model.
نویسندگان
چکیده
Hierarchical models are extensively studied and widely used in statistics and many other scientific areas. They provide an effective tool for combining information from similar resources and achieving partial pooling of inference. Since the seminal work by James and Stein (1961) and Stein (1962), shrinkage estimation has become one major focus for hierarchical models. For the homoscedastic normal model, it is well known that shrinkage estimators, especially the James-Stein estimator, have good risk properties. The heteroscedastic model, though more appropriate for practical applications, is less well studied, and it is unclear what types of shrinkage estimators are superior in terms of the risk. We propose in this paper a class of shrinkage estimators based on Stein's unbiased estimate of risk (SURE). We study asymptotic properties of various common estimators as the number of means to be estimated grows (p → ∞). We establish the asymptotic optimality property for the SURE estimators. We then extend our construction to create a class of semi-parametric shrinkage estimators and establish corresponding asymptotic optimality results. We emphasize that though the form of our SURE estimators is partially obtained through a normal model at the sampling level, their optimality properties do not heavily depend on such distributional assumptions. We apply the methods to two real data sets and obtain encouraging results.
منابع مشابه
Empirical estimates for various correlations in longitudinal-dynamic heteroscedastic hierarchical normal models
In this paper, we first define longitudinal-dynamic heteroscedastic hierarchical normal models. These models can be used to fit longitudinal data in which the dependency structure is constructed through a dynamic model rather than observations. We discuss different methods for estimating the hyper-parameters. Then the corresponding estimates for the hyper-parameter that causes the association...
متن کاملShrinkage estimates for multi-level heteroscedastic hierarchical normal linear models
Empirical Bayes approach is an attractive method for estimating hyperparameters in hierarchical models. But, under the assumption of normality for a multi-level heteroscedastic hierarchical model, which involves several explanatory variables, the analyst may often wonder whether the shrinkage estimators have efficient asymptotic properties in spite of the fact they involve numerous hyperparamet...
متن کاملOptimal Shrinkage Estimation in Heteroscedastic Hierarchical Models
Hierarchical models are powerful statistical tools widely used in scientific and engineering applications. The homoscedastic (equal variance) case has been extensively studied, and it is well known that shrinkage estimates, the James-Stein estimate in particular, offer nice theoretical (e.g., risk) properties. The heteroscedastic (the unequal variance) case, on the other hand, has received less...
متن کاملAN ADDITIVE MODEL FOR SPATIO-TEMPORAL SMOOTHING OF CANCER MORTALITY RATES
In this paper, a Bayesian hierarchical model is used to anaylze the female breast cancer mortality rates for the State of Missouri from 1969 through 2001. The logit transformations of the mortality rates are assumed to be linear over the time with additive spatial and age effects as intercepts and slopes. Objective priors of the hierarchical model are explored. The Bayesian estimates are quite ...
متن کاملOn Small Sample Inference for Common Mean in Heteroscedastic One-way Model
In this paper we consider and compare several approximate methods for making small-sample statistical inference on the common mean in the heteroscedastic one-way random effects model. The topic of the paper was motivated by the problem of interlaboratory comparisons and is also known as the (traditional) common mean problem. It is also closely related to the problem of multicenter clinical tria...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Statistical Association
دوره 107 500 شماره
صفحات -
تاریخ انتشار 2012